Nincs királyi út!

A textilkirály és a matematikus

Az alább közölt levélváltás kezdeményezője a maga szakterületén elismert és népszerű, Goldberger Leó, aki a fővárosi úri társaság életének is meghatározó alakja volt. Ismerte és tisztelte az ekkor már világhírű matematikus Fejér Lipótot, és nagy tisztelettel fordult hozzá egy matematikai kuriózum rejtélyének feloldásáért. A tisztelet kölcsönösnek bizonyult. A kiváló matematikus – aki a rejtélyes feladványt nem ismerte – nem átallott azonnal tollat ragadni, és válaszában alaposan kifejtette a megoldást.

Fejér Lipót kézzel írott válaszlevele Goldberger Leónak

Budapest, 1943. január 22.

Mélyen Tisztelt Kedves Barátom!

Köszönöm szíves soraidat és az érdekes tétel közlését. Én nem is hallottam ezt soha. Meggyőződtem róla, hogy 142857 valóban az egyetlen hatjegyű szám, amely a szóban forgó tulajdonsággal bír.

Feladat. Keressünk egy tízes-rendszerbeli hatjegyű egész számot x = abcdef, amely a következő három tulajdonsággal bír:
1.) az a, b, c, d, e, f jegyek egyike sem egyenlő zérussal,
2.) az a, b, c, d, e, f jegyek egymástól különbözők
3.) az x, 2x, 3x, 4x, 5x, 6x mind hatjegyű számok, amelyek mind ugyanazon a, b, c, d, e, f jegyekkel írhatók fel, és pedig így:
                           x = a b c d e f                                     I.
                                 b c d e f a                                     II.
                                 c d e f a b                                     III.
                                 d e f a b c                                     IV.
                                 e f a b c d                                     V.
                                 f a b c d e                                     VI.
(A kívánalom [követelés] nem úgy értendő, hogy itt a második sor adja a 2x-et, a harmadik a 3x-et stb., hanem csak úgy, hogy a fenti hat szám az x, 2x, 3x, 4x, 5x, 6x-et adja valamely egymásutánban.)

Megjegyzés (pusztán egy matematikai műszó felemlítése). A második, harmadik, ..., hatodik sorban fölírt betűk az első sorban lévő a, b, c, d, e, f hat betű ú. n.

adják, és pedig mely permutációit? - az ú. n. (Honnan ez az elnevezés: cyclikus? Ha egy kört rajzolsz, és megjelölsz ezen, a nyíl által jellemzett természetes sorrendben hat pontot, a, b, c, d, e, f-et

akkor : ha a-nál kezded és körüljárod a kört, kapod: a b c d e f, ha b-nél kezded és körüljárod a kört, kapod: b c d e f a stb. - rendre a fenti hat „cyclikus permutációt".)

Már most kérdésünk legpregnánsabban úgy fogalmazhatjuk meg, hogy keresendő egy, az 1.), 2.) föltételeknek megfelelő x = a b c d e f hatjegyű szám úgy, hogy 3.) az x, 2x, 3x, 4x, 5x, 6x számok számjegyei megadják az a b c d e f cyclikus permutációinak teljes 6-tagú rendszerét (valamely sorrendben). (A 7-tel való szorzásról egyelőre hallgatunk.)

Azt állítottam, csak ismétlem, hogy x = 142 857 az egyetlen hatjegyű szám, amely az 1.), 2.), 3.) föltételeknek megfelel.

Bizonyítás. Világos, hogy az a = 1. Ha ugyanis a = 2, 3, ..., 9 volna, akkor 6x egymilliónál nagyobb volna, tehát nem volna hatjegyű szám.

Tehát
x = 1 b c d e f.
Az első jegy tehát meg van határozva.

Most a hatodik jegyet, az f-et fogom meghatározni. Azt állítom, hogy f nem lehet páros jegy (vagyis 2 vagy 4 vagy 6 vagy 8). Mert akkor 2x, 3x, 4x, 5x, 6x is vagy 0-sal vagy 2-vel vagy 4-gyel vagy 6-tal vagy 8-cal végződnék, tehát egyszer sem 1-gyel. Mivel pedig 1, mint láttuk, az x egyik jegye (az első), kell, hogy (a cyclikusság folytán) a többszörösök egyike az 1 jeggyel végződjék. Eszerint csak
f = 1 vagy 3 vagy 5 vagy 7 vagy 9
lehetséges.

Ámde f = 1 nem lehet, mert akkor az 1 jegy kétszer fordulna elő a keresett x-ben, amit kizártunk. Maradnak az
f = 3, 5, 7, 9
lehetőségek.

Most képezzük a 2x, 3x, 4x, 5x, 6x-et. Elhagyhatjuk a 2x, 4x, 6x páros többszörösöket, mert azok csak páros jeggyel, tehát 1-gyel nem végződhetnek. Marad a két többszörös:
3x, 5x

Minthogy
x = · · · · · f,
(ahol, mint mondottuk, f = 3 vagy 5 vagy 7 vagy 9), tehát 3x vagy 9-cel vagy 5-tel vagy 1-gyel vagy 7-tel végződik (tehát csak az f = 7 esetben 1-gyel). Viszont 5x mind a négy esetben 5-tel végződik.
Látjuk tehát, hogy az x = 1 b c d e f számra nézve a 2x, 3x 4x, 5x, 6x számok valamelyike akkor és csak akkor végződhetik 1-gyel, ha f = 7 (Ekkor 3x = · · · · · 1).

Tehát most már mondhatjuk, hogy szükségképpen
x = 1 b c d e 7,
vagyis a keresett szám első és hatodik jegyét meghatároztuk.

Most, drámai gyorsasággal, meg tudom határozni a még ismeretlen négy jegy lehetséges értékét (ha nem is mindjárt a helyöket is). Ugyanis az x imént nyert alakjából nyilván következik:
  x = · · · · · 7
2x = · · · · · 4
3x = · · · · · 1
4x = · · · · · 8
5x = · · · · · 5
6x = · · · · · 2
Minthogy követeljük, hogy mind a hat jegy egyszer és csak egyszer utolsó jegye legyen a hat darab hatjegyű x, 2x, 3x, 4x, 5x, 6x számok valamelyikének, tehát a mi keresett számunk szükségképpen az imént talált
1, 2, 4, 5, 7, 8
jegyekből áll. Csak az a kérdés, hogy melyik helyen áll ez a talált hat jegy? Az 1-ről már tudjuk, hogy (balról) az első helyen áll, és a 7-ről már tudjuk, hogy (balról) a hatodik helyen áll. De mi van a 2, 4, 5, 8 jegyek helyével?

Azt állítom először is, hogy az 5 jegy az ötödik helyen áll. Vagyis, hogy
x = 1 · · · 57
Ha ugyanis nem az 5 állna az ötödik helyen, akkor a három most posszibilis jegy közül a 2 vagy a 4 vagy a 8 állana ezen az ötödik helyen.

Ez azonban nem felel meg, amit a következőképpen bizonyítok be.

α) Ha ugyanis
  x = · · · · 27
volna, akkor
2x = · · · · 54
3x = · · · · 87
4x = · · · · 08
Íme 4x-ben föllépett a szerepléstől eltiltott 0 jegy. Tehát x = · · · · 27 nem felel meg.
Ha meg x = · · · · 47
volna, akkor

β)
2x = · · · · 94

Minthogy a 9 jegy szintén nem szerepelhet egyik többszörösben sem, tehát x = · · · · 47 sem válik be.
Végre, ha
γ)
x = · · · · 87
volna, akkor
2x = · · · · 74
3x = · · · · 67
Minthogy a 6 jegy szintén nem szerepelhet, tehát az x = · · · · 87 sem válik be.

Tehát tényleg az 5-ik helyen csak az 5 jegy állhat, vagyis addig jutottunk el, hogy
x = 1 b c d 5 7

Most egy pár sor, és a végén vagyunk.
Ezután a 8 jegy helyét keresem a még rendelkezésre álló három hely közül.
x = 18 · · 57
nem válik be, mert most 6x több, mint egymillió, és így több, mint 6 jegyből állana.

Megpróbáljuk tehát, hogy
x = 1 · 8 · 57
megfelel-e? csak két lehetőség van:
vagy:                              x = 1 2 8 4 5 7
vagy:                              x = 1 4 8 2 5 7

Egyik sem válik be. Ugyanis az első esetben
2x = · · · 914
a második esetben pedig
2x = · · 6514.
De 9, illetőleg 6 nem szerepelhet mint jegy. Tehát 8 nem lehet a harmadik helyen sem.

Marad, mint utolsó lehetőség:
x = 1 · · 857.
Ezután már csak két szám közül kell választanunk; az egyik
x = 1 2 4 8 5 7,
a másik
x = 1 4 2 8 5 7.
Az első nem válik be; ugyanis
2x = · · 9714
-ben a meg nem engedett 9-es jegy lép föl.
Végre marad
x = 1 4 2 8 5 7
mint egyetlen hatjegyű szám, amely a mi 1), 2), 3) követelésünknek eleget tehet.

Mondom, ezzel az van bebizonyítva, hogy az összes 6-jegyű, egymástól különböző jegyű, zérus jeggyel nem bíró számok között az x = 1 4 2 8 5 7 az egyetlen, amelyre nézve a 2x, 3x, 4x, 5x, 6x többszörösök jegyhatosai az eredeti 1, 4, 2, 8, 5, 7 számhatos többi 5 cyclikus permutációját adhatják. Hogy tényleg szolgáltatják, azt a szorzás mutatja:
x = 1 4 2 8 5 7                                                              I.
2x = 2 8 5 7 1 4                                                            III.
3x = 4 2 8 5 7 1                                                            II.
4x = 5 7 1 4 2 8                                                            V.
5x = 7 1 4 2 8 5                                                            VI.
6x = 8 5 7 1 4 2                                                            IV.
(A jobb oldalon álló római számok jelzik, hogy az 1. oldal értelmében hányadik cyclikus permutáció áll elő, ha x-et rendre 1, 2, 3, 4, 5, 6-tal megszorozzuk.)

Ezzel a feladatot megoldottuk.
Megjegyzem, próbáltam 3-jegyű számot találni, amely a mi x számunkkal analóg tulajdonságot mutat. hamarosan kiderült, hogy ilyen 3-jegyű szám nincs.


Adjuk össze a fenti hat számot; kapjuk, minthogy minden oszlop is az 1 4 2 8 5 7 jegyekből áll,
21x = (1+4+2+8+5+7) * (105+104+103+102+10+1) = 27*111 111,
vagyis, osztva mindkét oldalt 3-mal
7x = 9*111 111 = 999 999.

Látható ebből, hogy a 7-tel való szorzásra vonatkozó állítás már csak következménye az x, 2x, 3x, 4x, 5x, 6x-re vonatkozólag követelt „cyclikus" tulajdonságnak.

Én remélem, hogy amit írtam, meg lehet érteni. Ha valamely pont nehézséget okoz, akkor fordulj kedves tanítványomhoz, Popper Edit kisasszonyhoz, akit egy kis, esetleg szükséges magyarázat adására ezennel ünnepélyesen megkérek. A Méltóságos asszonynak tisztelettel kézcsókomat küldöm, Téged pedig, mint egyéniséged és nagy műved - annyi sok között - egyik igaz tisztelője, a semmeringi együttlétre is gondolva, szeretettel köszönt
Fejér Lipót

Ezen a napon történt november 22.

1943

Franklin D. Roosevelt amerikai elnök, Winston Churchill angol miniszterelnök és Csang Kaj-sek, kínai párt és állami vezető a Kairói...Tovább

1954

A DISZ KV Intéző Bizottsága rendkívüli ülésen tárgyalta 15 író feljegyzését az ifjúság jövőjéről. A határozat szerint „abból részkérdések...Tovább

1956

Nagy Imre és társai – miután a tárgyaló jugoszláv külügyminiszter-helyettes biztosította őket sértetlenségükről – szovjet katonai...Tovább

1963

Merénylet John Fitzgerald Kennedy, az Egyesült Államok 35. elnöke ellen Dallasban (Texas). A hivatalos verzió szerint Lee Harvey Oswald...Tovább

1975

Elfoglalja a királyi trónt János Károly spanyol király.Tovább

  • <
  • 2 / 3
  • >

Magunkról

A Magyar Országos Levéltár 2001-ben alapította – a levéltáros szakmában annak idején teljesen újszerű kezdeményezésként – a 20. század történelmével foglalkozó elektronikus forrásközlő folyóiratát, az ArchívNetet. Az évente hat alkalommal megjelenő lap egyre növekvő olvasólétszámmal rendelkezik, és nemcsak a szakemberek, hanem a történelem iránt érdeklődők széles táborának tudásvágyát is igyekszik kielégíteni.

Az ArchívNet 2016-ban tartalmilag és formailag is megújult. A politika-, diplomácia-, művelődés- és hadtörténet mellett az eddigieknél is erőteljesebben vannak jelen a gazdaság- és társadalomtörténeti témák, nagyobb hangsúlyt kapnak a napjainkban egyre népszerűbbé váló személyes dokumentumok (naplók, memoárok, levelezések). Tematikus számok jelennek meg, az új felület pedig korszerűbb, átláthatóbb, rendezettebb a korábbinál.

Akárcsak az elmúlt két évtizedben, az ArchívNet a jövőben is publikálási lehetőséget kíván nyújtani az 1867 utáni korszakkal foglalkozó magyar és külföldi levéltárosok, történészek, pedagógusok, diákok, doktoranduszok számára. Írásaikat a szerkesztőség címére várjuk!

A Szerkesztőség

Szerzőink figyelmébe ajánljuk jelzetelési és hivatkozási útmutatónkat, amely megegyezik a Levéltári Közleményekével.

Beköszöntő

Tisztelt Olvasók!

Megjelent online forrásközlő folyóiratunk idei harmadik száma. A legfrissebb ArchívNet publikációi olyan forrásokat ismertetnek, amelyek bemutatják a 20. századi magyar történelem mikro- és makroszintjének egy-egy részletét: legyen szó egyéni sorsokról, avagy államközi megállapodásokról.

Ordasi Ágnes (levéltáros, Magyar Nemzeti Levéltár Országos Levéltára) publikációjában olyan dokumentumokra hívja fel a figyelmet, amelyek egyszerre vonatkoznak a mikro- és a makroszintre. A Fiumei Kereskedelmi és Iparkamarához beérkezett felmentési kérelmek egyfelől bemutatják, hogy az intézménynek milyen szerepe volt az első világháború alatt a felmentések engedélyezése és elutasítása kapcsán a kikötővárosban, másrészt esettanulmányként kerül bemutatásra, hogy hasonló helyzetben miként működtek a királyi Magyarország területén működő, más kereskedelmi és iparkamarák. Harmadrészt pedig a fegyveres katonai szolgálat alól felmentésüket kérő személyek egyéni sorsába is betekintést engednek a forrásként szereplő kérelmek.

Fiziker Róbert (főlevéltáros, Magyar Nemzeti Levéltár Országos Levéltára) írásával már az első világháborút követő időszakba kalauzolja el az olvasót. A nyugat-magyarországi kérdést rendező velencei jegyzőkönyv egyik rendelkezésének utóéletét mutatja be egy döntőbírósági egyezmény segítségével. Ausztria és Magyarország között a velencei protokoll nyomán a helyzet rendeződni látszott, azonban a magyar fél a Burgenland területén okozott károk megtérítésével hadilábon állt. A két állam számára – ha alapjaiban nem befolyásolta Bécs és Budapest viszonyát – még évekig megválaszolatlan kérdést jelentett a ki nem egyenlített számla ügye.

A makroszintet bemutató irat után Deák András Miklós (történész, nyugalmazott diplomata) egy olyat történetet mutat be két távirat prezentálásával, amelyek egy, az emigrációt választó magyar család sorsára is rávilágítanak. Az újságíró Marton házaspár 1957-ben vándoroltak ki Magyarországról, azonban az államvédelem megpróbált rajtuk keresztül csapdát állítani az Amerikai Egyesült Államok budapesti nagykövetségén menedékben részesített Mindszenty József esztergomi érsek számára. Mindszentyt az államvédelem igyekezett rábírni arra, hogy hagyja el az országot a Marton családdal, erről azonban az amerikai diplomaták értesültek, így végül a terv nem valósult meg.

Pétsy Zsolt Balázs (doktorandusz, Károli Gáspár Református Egyetem) három olyan dokumentumot ismertet, amelyek rávilágítanak a magyarországi római katolikus egyház helyzetére a késő Kádár-korszakban. Az Álllami Egyházügyi Hivatal bemutatott jelentései 1986-ból és 1987-ből arról tájékoztatták az MSZMP KB Agitációs és Propaganda Osztályát, hogy miként zajlottak a Vatikán képviselőivel a különböző egyeztetések (személyi kinevezések, a Szentszék és Magyarország együttműködése stb.).

Az idei harmadik számunkban publikáló szerzőinknek köszönjük a kéziratokat, felhívjuk egyben leendő szerzőink figyelmét, hogy az ArchívNet következő számaiba továbbra is várjuk a huszadik századi forrásokat ismertető írásokat gazdaság-, intézmény-, hely-, politika- és társadalomtörténeti témákban.

 

Budapest, 2024. szeptember 19.

Miklós Dániel
főszerkesztő